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a b s t r a c t

The use of computer aided diagnosis (CAD) systems, which are computer based tools for the automatic
analysis of medical images such as mammogram and prostate MRI, can assist in the early detection and
diagnosis of developing cancer. In the process of CAD for mammogram, the task of image processing
(IP) plays a fundamental role in providing promising diagnostic results, by exploiting high-quality
features extracted from the mammographic images. Normally, an IP procedure for mammographic
images involves three mechanisms: region of interest (ROI) extraction, image enhancement (IE) and
feature extraction (FE). However, an improper utilisation of IE may lead to an inferior composition
of the features due to unexpected enhancement of any irrelevant or useless information in ROI.
In order to overcome this problem, a fuzzy-rough refined IP (FRIP) framework is presented in this
paper to improve the quality of mammographic image features hierarchically. Following the proposed
framework, the ROI of each mammographic image is segmented and enhanced locally in the area of
the block which is of the highest value of fuzzy positive region (FPR). Here, FPR implies a positive
dependency relationship between the block and the decision with regard to the given feature set. The
higher a block’s FPR value the more certain its underlying image category. To attain a high quality of the
image enhancement procedure, the winner block will be further improved by a multi-round strategy
to create a pool of IE results. As such, for a mammographic image, after embedding the candidate
enhanced blocks into the original ROI, the respectively extracted features from the locally enhanced
ROI are compared against each other on the basis of the value of FPR. A given image is therefore
represented by a set of features which are supported by the premier FPR among all of the resulting
extracted features. The quality of the extracted features by FRIP is compared against that of those
directly extracted from the original images, from the globally enhanced images or from the randomly
locally enhanced images in performing classification tasks. The experimental results demonstrate that
the mammographic risk assessment results based on the features achieved by the proposed framework
are much improved over those by the alternatives.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Breast cancer is the most common cause of death for middle-
aged women. According to the estimates by the International
Cancer Research Institute of the World Health Organisation, more
than one million women in the world die from breast cancer
every year [1]. According to a report of the Global Cancer Statistics
2018 released by the International Agency for Research on Cancer
(IARC), which is part of the World Health Organization (WHO),
as almost 2.09 million new cases were diagnosed, breast cancer
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caused an estimated 0.63 million deaths in 2018 [2]. Along with
the increased levels of breast cancer occurrence, the level of early
detection has also been recorded thanks to screening by the use
of mammographic imaging and expert opinion. Mammography is
a specific type of imaging that uses a low-dose X-ray system to
result in a high-shrinkage and high-resolution movie to examine
breasts [3]. However, even expert radiologists may sometimes fail
to detect a significant proportion of mammographic abnormali-
ties. Also, a large number of detected abnormalities are usually
discovered to be benign following further medical investigation.

Existing mammographic computer-aided diagnosis (CAD) sys-
tems [4–6] concentrate on the detection and classification of
mammographic abnormalities, based on the features extracted
from suspicious regions. Such techniques on the digitalised mam-
mogram help the doctors to discover the existence of tumour,

https://doi.org/10.1016/j.asoc.2020.106230
1568-4946/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2020.106230
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2020.106230&domain=pdf
mailto:yanpengqu@dlmu.edu.cn
https://doi.org/10.1016/j.asoc.2020.106230


2 Y. Qu, Q. Fu, C. Shang et al. / Applied Soft Computing Journal 91 (2020) 106230

especially useful when being applied in early stages of cancer
development. Among the components for implementing CAD sys-
tems, image processing (IP) plays a vital role in providing a set
of high-level features for promising diagnosis result. In general,
the process of IP for mammogram involves three mechanisms:
the region of interest (ROI) extraction, image enhancement (IE)
and feature extraction (FE). Mammogram often contains tags
and artefacts that appear as high-intensity markers on a dark
background. The noises, vascular and glandular tissues may affect
the search for abnormal areas and lead to a poor classification ac-
curacy. Additionally, in mammogram, chest muscles are present
in the area of objects with various noises. Such information also
adversely affects the outcome of FE. Therefore, FE is normally not
appropriate to be applied to a mammographic image as a whole,
but it may be suitable for certain specific areas or ROI [7].

An ROI includes samples within a dataset identified for a
particular purpose. For medical imaging, ROI is the most com-
monly used as a particular portion which is of concern during
a diagnosis or of interest during research. ROI can be defined
as the approximate outlining for the object of interest or as a
rectangular region that contains both the object of interest and
certain background. To extract ROI, a given image is normally
denoised first. In order to avoid any potential negative influence
of the microstructure that may appear in certain regions, the
breast region is smoothed using a median filter, as done in [8].
Then, fuzzy c-means clustering [9] may be utilised to divide
pixel grey values into two separate categories: adipose tissue and
dense tissue. In the step of removing the background, techniques
such as the so-called modal open image function [10] can be
applied. Subsequently, a segmentation method based on area
growth is often implemented to prevent large-scale segmentation
around the seed with only the suspected mass present in the
mammogram is segmented as the ROI [11]. Histogram may be
employed to enhance the image and the Sobel detector may be
performed to support edge detection for preprocessing and image
segmentation as with the work of [12]. In [13], ROI regions are
located and extracted on the basis of the maximally inscribed
circle and centroid methods. In addition, an algorithm automat-
ically generates a class number that can partition mammogram
into the best areas as ROI regions can be found in [14]. Similarly,
an algorithm that uses tetrolet filter to reduce the speckle noise
and the active contour method based on statistical features to
automatically segment breast lesions to obtain an ROI can be
found in [15]. Methods for automatic ROI construction have also
been proposed to serve as an alternative to the manual process
of ROI labelling in CAD, for breast lesions [16,17].

The purpose of IE is to improve both the identifiability of
target features and the quality of images to meet the analysis
needs of specific application scenarios [18]. The commonly used
IE methods include the following: (1) Histogram equalisation: the
histogram of the original image is converted into an image with a
probability density of 1 by the use of integral probability density
function, thereby achieving the effect of improving contrast [19]
(e.g., through dynamic recursive sub-image histogram equalisa-
tion [20]). (2) Median filtering: the intermediate value is taken
after sorting out the grey values of the pixels in the centre of a
given window, therefore being itself a smoothing filter to elimi-
nate noise and achieve enhancement [21]. (3) Wavelet transform:
the relevant wavelet parameters are modified as needed in im-
age decomposition and reconstruction, enabling multi-resolution
analysis that helps capture spatial domain localisation character-
istics, while focusing on the details of the interested object in the
image [22].

From the enhanced ROI features are extracted. Commonly
adopted FE methods can be grouped into the following four cate-
gories: (1) Statistical method, a typical representative of which

is to conduct texture feature analysis through grey level co-
occurrence matrix (GLCM) [23], and another is to extract texture
representations by manipulating image autocorrelation functions
(e.g., to extract the characteristic parameters such as the thick-
ness and directionality of the texture by calculating the energy
spectrum function of the image) [24]. (2) Geometry method,
which offers means for texture feature analysis based on the
theory of texture primitives, including two influential algorithms:
the Voronio checkerboard feature method [25] and the structural
method [26]. (3) Model-based method, which is based on the
structural model of a given image, with the parameters of the
model being used as texture features, typically including random
field models (e.g., Markov random field [27] and Gibbs random
field model [28]). (4) Signal processing method, which works by
the use of linear transformation or filters to obtain texture fea-
tures expressed in the transformed domain while being subject
to certain domain constraints (e.g., energy criteria) [29].

For conventional approaches to medical IP, an ROI region is
normally cut from the original image for processing in its entirety.
In such an ROI, not all information is useful or related to decision-
making. A certain zone of the ROI may possess more decisive
information to the decision label than the rest. If the process of
IP ignores the relative significance of different parts of the ROI,
the subsequent operations, i.e., IE and FE may lead to an opposite
effect to the quality of the features from the design intention,
due to the enhancement and prominence of irrelevant or useless
information. This may mislead the composition of the extracted
features, thereby adversely impacting upon the following tasks
of data analysis, such as feature selection and diagnosis deci-
sion making. In order to address this important problem, this
paper presents a fuzzy-rough refined IP (FRIP) framework with
an aim to improve the quality of mammographic image features
hierarchically.

In this work, the ROI of a mammographic image is acquired
by the successful means as described in [30]. The popular sliding
window (SW) algorithm [31] is adopted to achieve a segmenta-
tion, namely a cover of the resulting ROI. The significance of each
window block will be evaluated by the value of fuzzy positive
regions (FPR) [32,33], with respect to the features extracted using
grey level co-occurrence matrix (GLCM) [23] within the given
window. Note that the FPR values imply a positive dependency
relationship between the objects and the decisions given the
extracted feature sets. Thus, the window contains the highest
value of FPR is most confirmative to the image label and the most
preferable to represent the entire ROI. Such a window (which has
the highest FPR value) is further enhanced through the use of a
pulse coupled neural network (PCNN) [34]. In particular, to obtain
high quality features, the winner window is repeatedly enhanced
by PCNN with different thresholds each time when a pool of IE
results is created.

In implementation, for a mammographic image, after embed-
ding the candidate enhanced blocks into the original ROI, the
respectively extracted features from the locally enhanced ROI
are compared against each other on the basis of the values of
their FPR. The original image is then represented by the set
of features which are obtained from the premier FPR among
all extracted feature sets. Furthermore, the mammographic risk
assessment results based on the extracted features by FRIP is
compared against those based on the features directly extracted
from the original image, the globally enhanced image, and the
locally enhanced images using randomly chosen windows. The
classifiers adopted in this work for verification include J48 [35],
JRip [36], PART [37], AdaBoostM1 [38], RandomForest (RF) [39].
The experimental results demonstrate that the mammographic
risk assessment outcomes based on the features achieved by
the proposed framework are much better than those by the
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Fig. 1. Example of GLCM computation with distance d =1 and angle θ = 0◦ , of an 8 grey level image.

alternative features, in terms of both classification accuracy and
kappa coefficient [40]. In order to examine the applicability of the
proposed approach, the results based on the features obtained
by FRIP with different configurations of the sliding window are
illustrated also.

The remainder of this paper is structured as follows. The
related work on mammogram feature extraction is outlined in
Section 2. The improved approach is presented and discussed in
Section 4. In Sections 3 and 5, the experimental data and results
are described respectively. The paper is concluded in Section 6,
with a brief discussion regarding important further work.

2. Background

This section reviews the related approaches to FE, IE and image
segmentation that are employed in this work. Moreover, the
concept of fuzzy-rough sets which will be used as the underlying
computational theory is introduced as well.

2.1. Grey level co-occurrence matrix

The algorithm of grey level co-occurrence matrix (GLCM)
refers to a popular method for describing texture by studying
the spatial correlation characteristics of grey scales [23,41]. As
its name implies, running GLCM is to obtain the co-occurrence
matrix by calculating on the values of the grey image. Then the
eigenvalues of the matrix are obtained to represent the features
of the image. GLCM helps capture comprehensive information
of the image grey scales with respect to direction, adjacent
interval and variation amplitude. It forms the basis for analysing
the local patterns of images and their arrangement rules. As
a powerful tool for feature extraction, GLCM is usually used
to extract texture features, including contrast, texture entropy,
correlation, variance [41]. GLCM can be run for different distances
and orientations [42]. Fig. 1 shows the way to generate GLCM
features given an image, where the grey level of each pixel ranges
from 1 to 8 (see Fig. 1a). The scale of the resulting matrix is
8 × 8, as shown in Fig. 1b. Each element G(i, j) of this matrix
records the number of occurrences that the grey level i is located
at a distance d from a grey level j and in the horizontal adjacent
direction (i.e., being oriented by an angle θ = 0◦). For instance, in
Fig. 1a, the ordered tuple of grey levels 1 and 2 only occurs once
from two horizontally adjacent pixels. In this case, the value of
G(1, 2) in the resulting GLCM matrix is 1. Also, the value of the
G(7, 5) of GLCM is 2 indicates that the occurrence of the ordered
tuple of grey levels 7 and 5 is observed twice.

2.2. Sliding window algorithm

In the context of IP, a sliding window [31] is a rectangular
region of fixed width and height that slides across an image. For
each of such regions, certain measures are applied to determine
if the window contains any information of interest.

Given an image whose size is m×n, the number of the sliding
windows of a size m̃ × ñ is calculated by

num =

(
m − m̃

λ
+ 1

)
×

(
n − ñ

λ
+ 1

)
, (1)

where, λ is the step size of each sliding. This method slides
the entire image in equidistant steps with a fixed-size sliding
window, and performs detection within each sliding window. As
such, its most significant strength is that the miss detection rate is
extremely low because it slides the entire image without missing
any position. As shown in Fig. 2, the step size λ is set to 48
pixels, the window size is set to 160 × 160 pixels, so the given
256 × 256 ROI is traversed to result in nine areas.

During the procedure of searching for the optimal block, the
size of the sliding window should be set appropriately. If the
window is too small, the result of the feature calculation is not
going to be influential for decision-making; if the window is
too large, the small target area will be enlarged, resulting in a
decrease in target positioning accuracy. Note that if all windows
are mutually disjoint. Thus, they can constitute a segmentation,
or otherwise a cover, of the image.

2.3. Pulse coupled neural network model

Pulse coupled neural network (PCNN) is an iterative IE model,
which simulates the response of mammalian visual cortex neu-
rons to visual signals. PCNN has proven to be effective in many
applications, e.g., for improving the brightness or enhancing the
edge of an image, and for making the texture details more promi-
nent [43]. Inspired by this observation, PCNN is adopted herein
to process mammogram images to make their texture represen-
tation clearer and more recognisable.

The framework of PCNN can be regarded as a single-layer two-
dimensional network, in which each neuron corresponds to each
pixel of the input image [44]. Fig. 3 shows the PCNN neuron
model, which includes a receptive field, a nonlinear modulation
field, and a pulse generator. The function of each component is
introduced below.

1. For the pixel whose coordinate in an image is (i, j), the
input of the receptive field consists of a feedback input Fij
and a linear connection input Lij, as defined by

Fij[n] = Sij[n] (2)

Lij[n] = e−αLLij[n − 1] + VL

∑
WijklYkl[n − 1], (3)
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Fig. 2. Sliding window to capture image and local enhancement.

Fig. 3. A PCNN neuron model.

where, as the external input signal, n is the number of
pulse ignition iterations; Fij is equal to the value Sij of the
grey level of this pixel; Lij is the connection input of the
neighbourhood neuron, which is obtained by a weighted
summation of Ykl and Wijkl; Ykl, initialised as 0, is the
output of the neighbouring neuron (acting as the input
of its neighbour); Wijkl is the internal connection matrix,
and stores the weighting coefficients for the neighbouring
neuron connections; αL is the attenuation constant of Lij;
and VL is the intrinsic potential of the connection input.

2. As the output of the modulation field, Uij is the internal
activity item formed by the signal of two input channels Fij
and Lij through the modulation, as defined below:

Uij[n] = Fij[n](1 + βLij[n]), (4)

where, β is the connection strength coefficient.
3. In the pulse generator, Uij is compared with a dynamic

threshold Eij to produce the output pulse Yij. When Eij
exceeds the internal activity item Uij, the pulse generator
is turned off and the pulse is stopped. Then, the thresh-
old begins to decrease exponentially. When the dynamic
threshold is lower than Uij, the pulse generator is turned
on again and the neuron is fired or activated, and a pulse or
pulse sequence is produced as the output in the following
way [45]:

Eij[n] = e−αE Eij[n − 1] + VEYij[n − 1], (5)

Yij[n] =

{
1, Uij[n] > Eij[n],
0, otherwise.

(6)

where, VE is the amplitude constant; αE is the time decay
constant of the dynamic threshold Eij, determining the
number of iterations in a cycle where all pixels are pro-
cessed; and Yij is the pulse output function of PCNN [46].

With the use of the output of pulse generator, the grey value
of each pixel is enhanced according to Eqn. (7).

EnhIij = (ln(Bri) − αE(ñ − 1))Yij, (7)

where EnhIij represents the grey value of pixel (i, j) in the en-
hanced image [34]; Bri is the maximum brightness value in the
original image; and ñ records the ignition time of this PCNN
neuron. It can also be seen from Eqn. (7) that by adjusting the
value of αE , different IE effects can be obtained. In order to ensure
that Eij is attenuated sufficiently slowly to distinguish adjacent
grey levels by different ignition timings, the αE value should be
carefully set, which may be done empirically.

2.4. Fuzzy positive region

In a fuzzy-rough set (FRS) [32,33,47], there are two types of
approximation: the lower approximation as the fuzzy positive
region (FPR) and the upper approximation as the complement
of the fuzzy negative region. The former is defined as the set
of those objects which can be said with certainty to belong to
the concept to be approximated, and the latter is defined as the
set of objects which either definitely or possibly belong to the
concept to be approximated (given a reference equivalence par-
tition of the universe of discourse). Normally, the concept to be
approximated refers to the decision information of the datasets.
The difference between the upper and lower approximation is the
area known as the fuzzy boundary region, representing the area
of uncertainty. When the boundary region is empty, there is no
uncertainty regarding the concept which is being approximated
and all objects belong to the subset of objects of interest with full
certainty.

Definitions for the fuzzy lower and upper approximations can
be found in [32,33], where a T -transitive fuzzy similarity relation
is used to approximate a fuzzy concept X:

µRPX (x) = inf
y∈U

I(µRP (x, y), µX (y)), (8)

µRPX (x) = sup
y∈U

T (µRP (x, y), µX (y)), (9)

where U is a nonempty set of finite objects (the universe of
discourse); I is a fuzzy implicator; T is a T -norm; and RP is the
fuzzy similarity relation induced by the subset of features P:

µRP (x, y) = Ta∈P {µRa (x, y)}, (10)

with µRa (x, y) being the degree to which the objects x and y are
regarded to be similar with respect to feature a.

Given the above, the positive region regarding a fuzzy concept
X and a set of attributes Q which induces equivalence relations
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Fig. 4. Example mammograms, where (a) I, SCC 0%, Pattern II, N1; (b) II, SCC 0%–10%, Pattern III, P1; (c) II, SCC 11%–25%, Pattern III, P1; (d) II, SCC 26%–50%, Pattern
I, P1; (e) III, SCC 51%–75%, Pattern IV, P2; (f) IV, SCC >75%, Pattern V, DY.

over U is defined by

µPOSRP (Q )(x) = sup
X∈U/Q

µRPX (x), (11)

The value of Eq. (11) not only indicates the degree of object x
belonging to the FPR, but also illustrates the capacity of object
x implying the decision. The object with a higher value of FPR
is more affirmatively related to the decision regarding the given
feature set. In this work, FPR is used as the gauger to select the
optimal local information of ROI and henceforth, the best features
of each mammographic image in the proposed IP framework.

3. Mammographic dataset used

The experimental data used in this paper is derived from
images extracted from the Mammographic Image Analysis Society
(MIAS) database [48]. It includes a set of Medio-Lateral-Oblique
(MLO) left and right mammogram of 161 woman (322 samples).
The spatial resolution of the image is 50 µm×50 µm, which is
quantised to 8 bits with a linear optical density in the range 0–3.2.
As with the literature, mammographic risk assessment criteria are
herein based on BI-RADS [49], Boyd [50], Tabár [51], Wolfe [52]
(see Fig. 4 for examples).

In particular, BI-RADS [49] is used to category a mammogram
into one of four classes: (1) BI-RADS I: Breast density is low; (2)
BI-RADS II: There exists some fibroglandular tissue; (3) BI-RADS
III: Breast density is high; (4) BI-RADS IV: Breast is extremely
dense. In [53], it is reported that associations between BI-RADS I–
IV and breast carcinoma (adjusted for weight) in postmenopausal
women of which the risks are 1, 1.6, 2.3 and 4.5, respectively

Boyd [50] introduced a quantitative classification of mammo-
graphic density. It is based on the proportion of dense breast tis-
sue relative to the overall breast area. The classification is known
as Six-Class-Categories (SCC) where the density proportions are:
Class1: 0%, Class2: (0%–10%), Class3: (10%–25%), Class4: (25%–
50%), Class5: (50%–75%) and Class6: (75%–100%). The increase in
the level of breast tissue density is associated with an increase in
the risk of developing breast cancer. The increase in the level of
breast tissue density has been associated with an increase in the
risk of developing breast cancer, specifically the relative risk for
SCC 1-6 are 1, 1, 1.9, 2.2, 4.6 and 7.1, respectively [50].

Tabár [51] described breast composition of four building
blocks: nodular density, linear density, homogeneous fibrous
tissue and radiolucent adipose tissues. These blocks also define
mammographic risk classification. In particular, the following
patterns are defined, with Patterns I–III corresponding to lower
breast cancer risk and Patterns IV–V relating to higher risk: (1)
Pattern I mammograms are composed of 25, 16, 35 and 24% of the
four building blocks, respectively; (2) Pattern II has approximate
compositions of 2, 14, 2 and 82%; (3) Pattern III is quite similar in
composition to Pattern II, except that the retroareolar prominent
ducts are often associated with periductal fibrosis; (4) Pattern
IV is dominated by prominent nodular and linear densities, with
compositions of 49, 19, 15, and 17%; (5) Pattern V is dominated
by extensive fibrosis and is composed of 2, 2, 89 and 7% of the
building blocks, respectively.

Wolfe [52] used the following four categories to recognise
mammogram: (1) N1 mainly concludes fatty tissue and a few
fibrous tissue stands; (2) P1 shows a prominent duct pattern,
where a beaded appearance can be found either in the subareolar
area or in the upper axillary quadrant; (3) P2 indicates server
involvement of a prominent duct pattern which may occupy
from one-half up to all of the volume of the parenchyma, often
with the connective tissue hyperplasia producing coalescence of
ducts in some areas; and (4) DY features a general increase in
density of the parenchyma and there may, or may not, be a
minor component of prominent duct. These four groups have an
occurrence rate of developing breast cancer of 0.1, 0.4, 1.7, 2.2,
respectively.

4. Fuzzy-rough refined image processing

Through an integrated use of the techniques introduced above,
this section presents a fuzzy-rough refined IP (FRIP) framework
for mammographic risk assessment. Fig. 5 illustrates the
flowchart of the proposed scheme, consisting of three key pro-
cedures:

1. Image pre-processing and ROI extraction.
2. ROI segmentation and local evaluation.
3. ROI local enhancement and feature fusion.

4.1. Image pre-processing and ROI extraction

The mammographic images are pre-processed to extract the
breast tissue region for further analysis. The breast region is
denoised by removing the pectoral muscles and other artefacts,
such as the orientation tags and the adhesive tapes from the
image. Since most of the dense tissues and parenchymal pat-
terns are located within the breast fibroglandular disk area, it
is expected that the features will only be extracted from such
regions. Segmentation of the fibroglandular disk region can help
to extract the tissue characteristics of the right region. Take the
BI-RADS criterion for instance, in most cases the areas outside the
fibroglandular region contain fatty tissue regardless of their BI-
RADS density class as most of the dense tissue patterns develop
in the fibroglandular region. So extracting similar features outside
the fibroglandular region does not provide discriminative features
for tissue density classification. An appropriate ROI is extracted
from each mammographic image for the fibroglandular disk area,
of a 256 × 256 pixel size, as shown in Fig. 6. For extracting
the fibroglandular disk region, the longest perpendicular distance
from the breast boundary is considered which is usually the
distance starting from the nipple area and then, a parallel distance
line from the breast boundary is considered. The intersection
point is regarded as the central point of the ROI region. With this
central point, an ROI of a 256 × 256 pixel size is extracted as the
sample fibroglandular disk region [30].
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Fig. 5. Architecture of proposed framework.

Fig. 6. Extraction of fibroglandular disk area from mammogram.

4.2. ROI segmentation and local evaluation

In the proposed framework, for capturing local information
of the initially extracted ROI, the sliding window algorithm is
employed to generate a segmentation or a cover of the ROI region.
For the purpose of making the experiment more comprehensive
and credible, the sizes of the sliding window are assigned to
be 160 × 160, 176 × 176, 192 × 192, 208 × 208, 224 × 224,
respectively. Note that if the step size λ of each sliding is a
relatively large number, the differences between the blocks may
be missed. On the contrary, if λ is rather small, the process
of going throughout the entire image with the sliding window
will be time-consuming. Given the sizes of the sliding window
used in this paper, the step size λ of each sliding is set to 16
moderately. In so doing, with the sliding windows whose sizes
are 160×160, 176×176, 192×192, 208×208 and 224 × 224, a
mammographic image will be segmented into 49, 36, 25, 16 and
9 blocks, respectively. In order to evaluate the significance of each
block in an ROI, from the original ROI regions and their window
blocks, the features are extracted by the GLCM algorithm. As
shown in Fig. 7, the GLCM results are generated in four directions:
0◦, 45◦, 90◦, 135◦, and the distance is set to equalling to 1 pixel.

Given the element G(x, y) of the resulting GLCM, the summa-
tions of the ith row and jth column are defined as shown in Eqn.
(12) and Eqn. (13), respectively.

Gx(i) =

∑
j=1

G(i, j). (12)

Gy(j) =

∑
i=1

G(i, j). (13)

Fig. 7. Pixels X1 , X2 , X3 and X4 are located at a distance d = 1 from the central
pixel X following the angles: θ = 0◦ , θ = 45◦ , θ = 90◦ and θ = 135◦ .

Let µx, µy, θx, θy be the respective means and standard deviations
of Gx and Gy. The types of feature extracted in this work include
contrast, entropy, correlation, inverse difference moment (IDM)
and angular second moment (ASM), which are introduced as
follows [54].

• Contrast (Con):

Con =

∑
i

∑
j

(i − j)2 ∗ G(i, j). (14)

• Entropy (Ent):

Ent = −

∑
i

∑
j

G(i, j) ∗ log(G(i, j)). (15)

• Correlation (Cor):

Cor =

⎡⎣∑
i

∑
j

(i ∗ j) ∗ G(i, j) − µx ∗ µy

⎤⎦ /σx ∗ σy. (16)

• Inverse Difference Moment (IDM):

IDM =

∑
i

∑
j

1
1 + (i − j)2

G(i, j). (17)

• Angular Second Moment (ASM):

ASM =

∑
i

∑
j

G(i, j)2. (18)

With the use of the above features, the block that has the high-
est value of FPR will be chosen to receive further enhancement.
That is, with regard to the proposed framework, the ROI of each
mammographic image is segmented and enhanced locally in the
area of the highest FPR value. To ensure high quality of the image
enhancement procedure, the winner block which enjoys the high-
est FPR value will be further improved by a multi-round strategy
to create a pool of image enhancement results. Therefore, for a



Y. Qu, Q. Fu, C. Shang et al. / Applied Soft Computing Journal 91 (2020) 106230 7

mammographic image, after embedding the candidate enhanced
blocks into the original ROI, the respectively extracted features
from the locally enhanced ROI will be compared against each
other in terms of the FPR value. As a result, the original image
will be represented by the set of features which are entailed by
the premier FPR among all extracted features.

Following the example in Fig. 2, the FPR value of each block is
calculated and marked in Fig. 8. It can be seen that block 4 has
the highest FPR = 0.6848. As such, it will be chosen as the winner
to receive further enhancement. Moreover, blocks 1, 2, 5, 7 and
8, which are the neighbouring blocks of block 4, achieve higher
FPR values than blocks 3, 6, 9. This observation helps verify the
rationality of the proposed method to choose the winner block.

4.3. ROI local enhancement and feature fusion

As indicated previously, the value of the time decay constant
αE should be determined carefully in order to ensure that the
dynamic threshold Eij can be attenuated sufficiently slowly to
distinguish adjacent grey levels in different ignition timings. Thus,
the IE process on the chosen block is implemented with a multi-
round strategy by PCNN which is devised to have a different value
of αE in each round, to create a pool of IE results. In so doing, the
number of the sets of the candidate features to represent each
mammographic image is the same as that of the distinct values of
αE for the PCNN algorithm. As shown in Fig. 9, all of the candidate
enhanced windows will be embedded into the original ROI to
produce the features by GLCM for use in further evaluation.

In the proposed framework, the appraisal of the candidate
extracted features from the locally improved ROI is conducted
with the use of FPR as well. Note that the features extracted from
the entire original ROI, which have been achieved in the process
of evaluating the window blocks, are employed to represent
the rest of the image. In addition, the winner set of features
associated with each mammographic image can be achieved from
the different rounds of IE process. Ultimately, the fusion of these
sets of features will be utilised as the ultimate FE results for
the mammographic image dataset. Overall, the proposed FRIP
framework is outlined in Alg. 1.

Algorithm 1 Fuzzy-rough Refined Image Processing Framework
Input:

Data: Mammographic Image Dataset
αE : time decay constant;
Max: number of rounds for updating αE .

Output: Xbest : resulting feature sets produced by FRIP.
1: Image pre-processing and ROI extraction on Data
2: Extracting feature dataset X0 from all ROIs
3: Initialisation: τ = 0, num = |Data|, i = 1
4: // ROI Segmentation and Local Evaluation
5: while i ≤ Max do
6: for j = 1; j ≤ num; j + + do
7: Segmenting the jth ROI into n blocks by sliding

window
8: for k = 1; k ≤ n; k + + do
9: xjk = features extracted from kth window of the

jth ROI
10: Xjk = updated X0 where features of jth ROI are

replaced by xjk
11: µjk = value of FPR of xjk in Xjk
12: if µjk > τ then
13: τ = µjk
14: kb = k
15: end if
16: end for
17: // ROI Local Enhancement

18: Enhancing kbth window block of jth ROI by PCNN
19: Embedding enhanced block into original ROI
20: end for
21: Extracting feature dataset Xi from all locally enhanced

ROIs
22: i + +

23: end while
24: // Feature Fusion
25: Initialise: j = 1
26: while j ≤ num do
27: for i = 0; i ≤ Max; i + + do
28: xij = features of jth sample in Xi

29: X̃ij = updated X0 where features of jth sample are
replaced by xij

30: µ̃ij = value of FPR of xij in Xi
31: if µ̃ij > τ then
32: τ = µ̃ij
33: ib = i
34: end if
35: end for
36: j = j + +

37: Xbest = feature dataset where jth sample is equal to xibj
38: end while

As can be readily inferred from Alg. 1, the time complexity of
the proposed FRIP framework is O(max{Max, num, n}3).

In the following experiments, the time decay constant αE in
PCNN is initialised as 0.01 and will be updated 100 times with
the step size 0.01. In so doing, as the IE process is repeatedly
executed, the value of αE increases from 0.01 to 1. Moreover,
as the number of pulse ignition iterations n is set to 10,000,
the associated dynamic threshold Eij, which is used to provoke
the effect of image enhancement by PCNN, will be updated 106

rounds in total.
In addition, the comparative study will apply two variants of

the FRIP framework: the globally enhanced ROI (GE) strategy and
the randomly locally enhanced ROI (RLE) strategy. Specifically,
the GE strategy refers to the means of enhancing the ROI entirely
in the IE process within the proposed framework. When FRIP
randomly chooses the window block for further enhancement, it
will be referred to as the RLE strategy below. Running these two
counterparts will help demonstrate the validity and superiority
of the FRIP method.

5. Experimental results

In this section, the mammographic risk assessment results
based on the features extracted by the proposed FRIP framework
are compared against those based on the original ROI strategy,
the GE strategy and the RLE strategy. The performance criteria
used are: confusion matrix and the statistical tests on both clas-
sification accuracy and the kappa coefficient [40]. Moreover, the
performance of the FRIP framework with different sizes of the
sliding window is also discussed.

The configuration of the implemented FRIP is given in Table 1,
where σa is the standard deviation of feature a in feature fusion.

The classification accuracies using the features achieved by
FRIP, the original ROI, GE and RLE are compared here. For com-
pleteness, the classification methods used in this comparative
study are J48 [35], JRip [36], PART [37], AdaboostM1 [38], RF [39].

5.1. Performance evaluation

The task of mammographic risk assessment is carried out in
terms of confusion matrix and the t-tests on both classification
accuracy and the kappa coefficient.
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Fig. 8. ROI segmentation and local evaluation.

Fig. 9. ROI local enhancement.

Table 1
Configuration of implemented FRIP framework.
Method Parameters

Sliding window 1. sliding window size is set to 160 × 160, 176 × 176,
192 × 192, 208 × 208, 224 × 224;
2. step size λ = 16.

PCNN

1. attenuation constant αL = 0.06931;
2. intrinsic potential VL = 1.00;
3. connection strength coefficient β = 0.2;
4. amplitude constant VE = 200;
5. time decay constant αE = 0.01;
6. number of rounds for updating αE = 100;
7. number of pulse ignition iterations n = 10000.

GLCM 1. distance d = 1;
2. direction angle θ = 0◦ , θ = 45◦ , θ = 90◦ , θ = 135◦ .

Feature fusion
1. Gödel T -norm (min(x,y));
2. Łukasiewicz fuzzy implicator (min(1 − x + y, 1));
3. fuzzy similarity relation µRa (x, y) =

max
(
min

(
(a(y)−(a(x)−σa))
(a(x)−(a(x)−σa))

,
((a(x)+σa)−a(y))
((a(x)+σa)−a(x))

)
, 0

)
.

5.1.1. Confusion matrix
Confusion matrix offers a standard means to support evalua-

tion of classification accuracy, expressed in a square matrix form
with regard to the number of the class categories. Classification
accuracy is herein defined as the ratio of the total number of
samples correctly classified to the number of all samples. Within
a confusion matrix, each column represents the prediction cate-
gory, and the total number of each column represents the number
of data predicted for that category. Each row represents the true
category to which the data belongs, and the total number of

Table 2
Confusion matrices and classification accuracies using the BI-RADS criterion.
Original RLE
(Accuracy = 67.19%) (Accuracy = 90.48%)

I II III IV I II III IV

I 37 18 4 0 I 48 6 0 5
II 13 54 19 0 II 7 76 0 3
III 0 11 120 12 III 0 0 142 1
IV 0 2 20 12 IV 5 2 0 27

GE FRIP
(Accuracy = 90.09%) (Accuracy = 94.04%)

I II III IV I II III IV

I 45 2 11 1 I 52 2 1 4
II 5 81 0 0 II 2 84 0 0
III 4 2 135 2 III 1 0 140 2
IV 0 0 4 30 IV 5 1 0 28

data in each row represents the number of data instances in that
category.

The confusion matrices as shown in Table 2 in response to the
use of the BI-RADS criterion are based on the features achieved
by the original, RLE, GE and FRIP, respectively. In particular, the
RF method, with forests of 100 trees each, is herein applied to
implement the classification tasks. The size of the sliding window
is set to 160 × 160. For Tables 3–5, the identical experimental
configuration is employed for consistency.

Note that the FRIP framework seeks to reduce class confusion,
such as that between class II and class III in Table 2. This is of
practical significance because these two classes constitute the
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Table 3
Confusion matrices and classification accuracies using the Boyd criterion.
Original RLE
(Accuracy = 50.12%) (Accuracy = 79.69%)

I II III IV V VI I II III IV V VI

I 0 5 0 1 0 0 I 1 3 0 2 0 0
II 1 37 10 8 2 2 II 1 53 0 4 2 0
III 0 12 19 11 3 1 III 0 0 38 6 2 0
IV 0 5 8 37 21 4 IV 0 0 0 63 10 2
V 0 1 1 16 59 14 V 0 0 1 18 69 3
VI 0 0 0 11 23 10 VI 0 0 0 0 6 38

GE FRIP
(Accuracy = 74.64%) (Accuracy = 84.25%)

I II III IV V VI I II III IV V VI

I 0 5 1 0 0 0 I 1 2 0 0 3 0
II 3 45 3 3 4 2 II 0 49 3 2 6 0
III 2 3 38 2 1 0 III 0 2 40 1 3 0
IV 0 1 0 62 12 0 IV 0 2 0 62 11 0
V 0 0 0 6 77 8 V 1 2 1 5 82 0
VI 0 1 0 1 18 24 VI 0 0 0 0 8 36

Table 4
Confusion matrices and classification accuracies using the Tabár criterion.
Original RLE
(Accuracy = 57.04%) (Accuracy = 78.16%)

I II III IV V I II III IV V

I 91 8 2 15 3 I 110 1 5 1 2
II 9 28 14 1 1 II 4 29 15 2 3
III 16 16 6 2 0 III 4 17 14 3 2
IV 25 0 1 50 6 IV 0 1 2 77 2
V 7 0 0 13 8 V 1 2 2 1 22

GE FRIP
(Accuracy = 79.88%) (Accuracy = 86.21%)

I II III IV V I II III IV V

I 109 2 1 7 0 I 111 1 1 4 2
II 1 32 13 7 0 II 10 36 2 5 0
III 5 11 21 3 0 III 0 2 38 0 0
IV 3 4 2 73 0 IV 6 2 0 72 2
V 1 1 0 8 18 V 5 0 1 3 19

Table 5
Confusion matrices and classification accuracies using the Wolfe criterion.
Original RLE
(Accuracy = 57.91%) (Accuracy = 89.64%)

I II III IV I II III IV

I 41 17 4 0 I 48 3 2 9
II 15 51 24 2 II 3 86 1 2
III 1 17 71 19 III 2 1 105 0
IV 0 2 26 32 IV 2 5 0 53

GE FRIP
(Accuracy = 88.60%) (Accuracy = 90.34%)

I II III IV I II III IV

I 49 7 4 2 I 53 2 1 6
II 8 81 3 0 II 2 86 1 3
III 2 4 100 2 III 3 0 98 7
IV 2 0 5 53 IV 2 1 2 55

majority of BI-RADS; it is therefore more useful, though more
difficult, to identify class II and III separately. As shown in Ta-
ble 2, the original dataset performs poorly to distinguish between
these two classes. For example, by RF, 19 class II members are
incorrectly classified as class III, and 11 class III members are
incorrectly classified as class II. Although by RLE and GE, such
classification results are improved, the performance of FRIP still
outperforms all of them. Few elements in classes III and II are
incorrectly classified into one another. Considering the results
shown in Tables 3–5 jointly, it can be seen that the FRIP frame-
work improves the ability to distinguish classes significantly.

Indeed, these experimental comparisons have shown that the
FRIP framework can function better at the level of individual risk
types. This is of great practical significance. Moreover, the results
also demonstrate that the use of FPR to evaluate the window
block is more promising than a random choice.

5.1.2. Statistical tests on classification accuracy
The paired t-test with a significance level of 0.05 is employed

to provide a statistical analysis of the resulting classification accu-
racy rates by the 5 classification methods introduced previously.
This is done in order to ensure that results are not discovered by
coincidence. Note that In these evaluations, the size of the sliding
window is set to be 160 × 160 pixels again.

The results of t-tests are annotated with three tags: better (v),
equivalent ( ) or worse (*) in Table 6, signifying that the relative
performance achievable by the features using the FRIP framework
in comparison to the features of the original dataset, GE and RLE
approaches for all of the 4 mammographic risk assessment cri-
teria. Such statistical significance results are further summarised
in the rightmost column of this stable, showing the count of the
number of statistically better, equivalent and worse results per
approach in comparison to the proposed. For example, by using
the BI-RADS criterion, the last entry ‘‘(0/0/5)’’ in the RLE row
indicates that the set of features generated by RLE performs worse
than FRIP for 0 classifiers, equivalently to FRIP for 0 classifiers,
and worse than FRIP for 5 classifiers.

From the results shown in Table 6, it can be concluded that
except for the occasional inferior results as compared to the use of
RLE by AdaboostM1 and JRip for the Wolfe criterion, the proposed
FRIP framework statistically outperforms its counterparts in most
cases. This from one aspect demonstrates that FRIP improves the
quality of the features in an effective and outstanding way for
mammographic risk assessment.

5.1.3. Statistical tests on kappa coefficient
To further compare with the existing work, the kappa co-

efficient [40] is employed to evaluate the experimental results
also. The kappa coefficient is generally regarded to be a more
robust measure than simple percentage agreement calculations
on accuracy since it summarises the level of any agreement
between observers after agreements by chance are removed. It
tests how well observers agree with themselves (repeatability)
and with each other (reproducibility). A high value of the kappa
coefficient represents better performance.

Table 7 presents the comparative results on the quality of
the features produced by the FRIP framework and by again, the
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Table 6
T-test on classification accuracy.
Dataset AdaboostM1 JRip PART J48 RF Summary

FRIP 91.83 90.09 91.52 91.64 94.04 (v/ /*)
BI-RADS RLE 88.37 * 85.72 * 87.69 * 87.63 * 90.48 * (0/0/5)

GE 88.63 * 87.02 * 87.48 * 87.82 * 90.09 * (0/0/5)
Original 61.12 * 65.90 * 59.38 * 60.86 * 67.19 * (0/0/5)

FRIP 83.63 81.71 82.70 83.48 84.25 (v/ /*)
Boyd RLE 76.27 * 75.13 * 74.96 * 75.27 * 79.69 * (0/0/5)

GE 72.16 * 68.09 * 71.45 * 73.31 * 74.64 * (0/0/5)
Original 48.13 * 41.30 * 46.87 * 46.20 * 50.12 * (0/0/5)

FRIP 86.80 80.39 85.17 85.57 86.21 (v/ /*)
Tabár RLE 76.24 * 71.71 * 74.54 * 74.79 * 78.16 * (0/0/5)

GE 77.39 * 75.29 * 76.40 * 77.39 * 79.88 * (0/0/5)
Original 52.91 * 49.66 * 51.39 * 52.91 * 57.04 * (0/0/5)

FRIP 88.59 86.49 88.91 89.16 90.34 (v/ /*)
Wolfe RLE 89.49 v 87.99 v 88.28 * 88.71 * 89.64 * (2/0/3)

GE 85.71 * 82.08 * 84.53 * 84.91 * 88.60 * (0/0/5)
Original 57.29 * 58.26 * 55.55 * 57.47 * 57.91 * (0/0/5)

Fig. 10. Classification accuracy using different sliding window sizes for all assessment criteria.

original, RLE and GE strategies while using the same classifiers as
illustrated previously. It can be seen that for the BI-RADS, Boyd
and Tabár metrics, FRIP leads to a superior performance, although
accidentally, for the Wolfe criterion, RLE provides a statistically
equivalent performance as compared to FRIP. This observation
is probably due to the fact that the block randomly chosen by
RLE happens to be closer to the winner block selected by FRIP.
Because two adjacent sliding window share a certain amount of
identical information, the FPR values of these two blocks may be
similar with regard to the Wolfe criterion. Through the use of the
multi-round image enhancement strategy, the features extracted
from the RLE selected block could be slightly better than those
from FRIP selected block by chance.

In particular, for all classification schemes, the values of the
kappa coefficient gained by FRIP are consistently, substantially
higher than 0.60. This once again demonstrate the superiority of
the proposed approach.

5.2. Different sliding window sizes

In this subsection, different sliding window sizes are used to
verify further the superiority of the proposed method. The step
size is set to 16 pixels. The 5 resulting locally enhanced datasets
are implemented with the sliding window sizes which are of

160 × 160, 176 × 176, 192 × 192, 208 × 208, 224 × 224 pixels,
respectively. For consistency of presenting experimental results,
again, the RF classifier with a forest of 100 trees is employed.

As shown in Fig. 10, when compared to the original breast
cancer datasets, the feature datasets obtained from the enhanced
images systematically receive higher classification accuracies. Oc-
casionally, with a 208 × 208 window size, the proposed method
is slightly underperformed than GE. However, the datasets ob-
tained under the FRIP framework with different sliding window
sizes consistently outperform those by the GE and RLE strategies
in most cases. In addition, it can be observed that, in some cases,
the size of the sliding window will impact the quality of the final
feature dataset significantly.

In general, through the experiments conducted, the FRIP
framework has improved the classification accuracy by 3%–10%
compared to the original, RLE and GE schemes. By checking
against the use of different classifiers while comparing the clas-
sification accuracy and kappa coefficient in statistics, the superi-
ority of FRIP is clearly demonstrated. Importantly, with the use
of differently sized sliding windows, the FRIP datasets achieve
consistently better results, showing the robustness of the pro-
posed approach. This experimental result also implies that it
is feasible to empirically select important parts to construct
FPR. A fundamental discovery is that information obtained from
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Table 7
T-test on kappa coefficient.
Dataset AdaboostM1 JRip PART J48 RF Summary

FRIP 0.88 0.85 0.88 0.88 0.91 (v/ /*)
BI-RADS RLE 0.83 * 0.79 * 0.82 * 0.82 * 0.86 * (0/0/5)

GE 0.83 * 0.81 * 0.82 * 0.82 * 0.85 * (0/0/5)
Original 0.43 * 0.49 * 0.40 * 0.82 * 0.51 * (0/0/5)

FRIP 0.79 0.76 0.78 0.79 0.80 (v/ /*)
Boyd RLE 0.70 * 0.68 * 0.68 * 0.69 * 0.74 * (0/0/5)

GE 0.65 * 0.59 * 0.64 * 0.66 * 0.68 * (0/0/5)
Original 0.34 * 0.22 * 0.32 * 0.31 * 0.36 * (0/0/5)

FRIP 0.82 0.73 0.80 0.81 0.81 (v/ /*)
Tabár RLE 0.68 * 0.61 * 0.66 * 0.66 * 0.71 * (0/0/5)

GE 0.70 * 0.66 * 0.68 * 0.70 * 0.73 * (0/0/5)
Original 0.36 * 0.28 * 0.34 * 0.36 * 0.41 * (0/0/5)

FRIP 0.84 0.82 0.85 0.85 0.87 (v/ /*)
Wolfe RLE 0.86 v 0.84 v 0.84 * 0.85 0.86 * (2/1/2)

GE 0.80 * 0.75 * 0.79 * 0.79 * 0.84 * (0/0/5)
Original 0.41 * 0.42 * 0.39 * 0.42 * 0.42 * (0/0/5)

the local evaluation can be more representative than the global
information.

6. Conclusion

Diagnosis of breast cancer using digital mammograms is an
important practical area of research. Positive results may affect
human mortality. This paper has presented a fuzzy-rough refined
image processing (FRIP) framework to improve the quality of
mammographic image features hierarchically. In particular, in
this work, ROI is segmented and enhanced locally according to
the highest value of the fuzzy positive regions (FPR) of the blocks
of potential interest. An object with a higher value of FPR is more
affirmatively related to the decisions on risk assessment. In so
doing, the features of a mammographic image are extracted and
represented according to a locally enhanced ROI. The final feature
dataset is generated as a fusion of such resulting features, having
the best FPR from a multi-round IE pool.

The proposed framework has proven to give improved mam-
mographic risk assessment results. Nevertheless, as pointed out
previously, this is a very difficult application domain. There is no
actual ground-truth to ensure which classification result is to be
ultimately correct in the first place. Therefore, the experimental
results achieved should be used with care, treating them as
providing a useful reference aid for human decision making. The
eventual task of deciding on the actual mammographic risk is up
to human radiologists. Nevertheless, the present approach has
shown to offer a good candidate for playing such a supportive
role.

The current work can be brought for classifying mammograms
into normal and abnormal breast tissue in order to support ra-
diologists for visual diagnosis, and it can be extended to other
mammogram databases. Currently, GLCM and PCNN are utilised
to implement the FE and IE methods. It would be interesting
to investigate any other novel methods that can obtain more
representative features (e.g., [55,56] which is also based on fuzzy-
rough sets or [57] which covers a range of nature-inspired feature
selection approaches) may be employed as their replacement. For
the sliding window algorithm, both the step size of each sliding
and the sliding window size play an important role in impacting
the final results. Consequently, in addition to the verification of
different sliding window sizes as shown in this paper, sensitivity
analysis with an incremental step size with respect to each sliding
is crucial for further model validation. This remains an active
research. Moreover, since the important part of a medical image
may not be regular, the method focused on selecting irregular
important areas is a worthwhile avenue of exploration.
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